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Abstract:  This article examines the formal (mathematical/combinatorial) properties of morphological models 

and examines the relationship between these formal properties and the empirical contents of morphological 

models. Three central combinatorial relationships (in the form of ratios) are explored in order to ascertain if 
such models can by “typed” according to these formal properties. A number of models are compared on the 

basis of these ratios and their divergences plotted.  
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1. Introduction 

 
When we create models, whether these are quantified or non-quantified, we construct them on a scaf-

folding of dimensions – i.e. mental constructs which support a range of values or conditions. To-
gether, these dimensions define a conceptual space. Spaces have certain properties, including rela-

tionships of connectivity between dimensions (topology), and relationships of measure within and 

between the values ranges of those dimensions (geometry). (For more details see Ritchey, 2012.) 
 

The relationships within a conceptual space are dependent upon the nature of the concepts involved 

in defining the space. In the case of morphological spaces (or models) this is self-evident. Here di-

mensionality is not expressed in the form of continuous variables (as we do with physical space) but 
in the form of variables with well-defined, finite, discrete value ranges. And in such a discrete mani-

fold, the principles of its internal relations are already implied by the specification of the dimensions 

of the manifold, and through the logical, empirical and normative constraints placed on them by real 
world problems. This makes up the all important content of the model. In comparison, the mathe-

matical/combinatorial properties of morphological models are only a formal aspect of this content. 

 
However, we cannot help but ask the question of whether there is any meaningful relationship be-

tween the formal properties of a morphological model and its empirical contents. This is a valid 

question which, we feel, warrants the study of these formal properties – on at least two grounds: 

 
Firstly, if it were possible to classify morphological models into different “types” on the basis of 

purely formal characteristics, this might help us to better understand morphological modelling in 

general. There is also a matter of pure academic curiosity: It would be intriguing to see to what ex-
tent morphological models/spaces can, in fact, be ascribed metric and topological properties analo-

gous to the general concept of “space” originally discussed by Bernhard Riemann (1953) and, more 

recently, to the conceptual spaces (“geometry of cognitive representations”) studied by Gärdenfors 

(2004). 
 

This article is divided up into the following sections:  

 

                                                   
*
 This is an extended, stand-alone version of Chapter 7 in Ritchey (2011).  
‡
 Contact: T. Ritchey, Swedish Morphological Society. Email: ritchey@swemorph.com 
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In Section 2, a short background to General Morphological Analysis (GMA) is presented – for those 

readers who are new to this area. NOTE: For those who already have a good working knowledge of 

general morphological modelling, you can skip this section and go on to Section 3.  
 

In Section 3, we will look at some of the purely combinatorial aspects of morphological models, 

such as how the number of dimensions and the number of parameter values determines the size of 
the problem space and the cross-consistency matrix.  

 

Section 4 will take a look at a number of relationships which are dependent upon the empirical con-

tents of the model, namely: how the global connections between parameters (“topology”) and the 
internal relationships between parameters pairs (“geometry”) influence the size and form of the solu-

tion space of the model.  

 
Finally, a number of client-based morphological models have been selected and compared on the 

basis of these derived relationships. 

 

2. Background to General Morphology
*
 

 

The term morphology derives from antique Greek (morphê) which means shape or form. Morpholo-

gy is "the study of form or pattern", i.e. the shape and arrangement of parts of an object, and how 
these conform to create a whole or Gestalt. The "objects" in question can be physical (e.g. an organ-

ism or an ecology), social/organizational (e.g. a corporation or a defense structure), or mental (e.g. 

linguistic forms or any system of ideas). 
 

The first to use the term morphology as an explicitly defined scientific method would seem to be 

J.W. von Goethe (1749-1832), especially in his "comparative morphology" in botany. Today, mor-

phology is associated with a number of scientific disciplines where formal structure is a central is-
sue, for instance, in linguistics, geology and zoology. 

 

In the late 1940’s, Fritz Zwicky, professor of astrophysics at the California Institute of Technology 
(Caltech) proposed a generalized form of morphology, which today goes under the name of General 

Morphological Analysis (GMA) 

 
“Attention has been called to the fact that the term morphology has long been used in many 

fields of science to designate research on structural interrelations – for instance in anatomy, 

geology, botany and biology. ... I have proposed to generalize and systematize the concept 

of morphological research and include not only the study of the shapes of geometrical, geo-
logical, biological, and generally material structures, but also to study the more abstract 

structural interrelations among phenomena, concepts, and ideas, whatever their character 

might be.” (Zwicky, 1969, p. 34) 
 

Zwicky developed GMA as a method for structuring and investigating the total set of relationships 

contained in multi-dimensional, non-quantifiable, problem complexes (Zwicky 1966, 1969). He ap-
plied the method to such diverse fields as the classification of astrophysical objects, the development 

of jet and rocket propulsion systems, and the legal aspects of space travel and colonization. He 

founded the Society for Morphological Research and championed the "morphological approach" 

from the 1940's until his death in 1974. 
 

Morphological analysis was subsequently applied by a number of researchers in the USA and Europe 

in the fields of policy analysis and futures studies (e.g. Taylor,1967; Ayres, 1969; Rhyne, 1971; Mül-

ler-Merbach, 1976; Godet, 1994; Coyle & McGlone, 1995; Ritchey, 1997). In 1995, advanced com-

puter support for GMA was developed at the Swedish Defence Research Agency FOI in Stockholm. 

                                                   
*
 For a more detailed presentation, see the JORS article:” Problem Structuring with Computer-Aided Morphological Anal-

ysis” (pdf) at: http://www.swemorph.com/pdf/psm-gma.pdf. 

http://www.swemorph.com/pdf/psm-gma.pdf
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This has made it possible to create non-quantified inference models, which significantly extends 

GMA's functionality and areas of application (Ritchey, 1998-2012). Since then, some 100 projects 

have been carried out using GMA, for structuring complex policy and planning issues, developing 

scenario and strategy laboratories, and analyzing organizational and stakeholder structures.
*
 

 

Essentially, GMA is a method for identifying and investigating the total set of possible relationships 
or “configurations” contained in a given problem complex. This is accomplished by going through a 

number of iterative phases which represent cycles of analysis and synthesis – the basic method for 

developing (scientific) models (Ritchey, 1991). 
 

The method begins by identifying and defining the most important dimensions (or parameters) of the 

problem complex to be investigated, and assigning each dimension a range of relevant values or 

conditions. This is done mainly in natural language, although abstract labels and scales can be uti-
lized to specify the set of elements defining the discrete value range of a parameter. 

 

A morphological field is constructed by setting the parameters against each other in order to create 
an n-dimensional configuration space (Figure 1). A particular configuration (the darkened cells in 

the matrix) within this space contains one ”value” from each of the parameters, and thus marks out a 

particular state of, or possible formal solution to, the problem complex. 
 

 

 
Figure 1: A 6-parameter morphological field. The darkened cells define one of 

4800 possible (formal) configurations.  

 
 

The point is, to examine all of the configurations in the field, in order to establish which of them are 

possible, viable, practical, interesting, etc., and which are not. In doing this, we mark out in the field 
a relevant solution space. The solution space of a Zwickian morphological field consists of the sub-

set of all the configurations which satisfy some criteria. The primary criterion is that of internal con-

sistency. 
 

Obviously, in fields containing more than a handful of variables, it would be time-consuming – if not 

practically impossible – to examine all of the configurations involved. For instance, a 6-parameter 

field with 6 conditions under each parameter contains more than 46,000 possible configurations. 
Even this is a relatively small field compared to the ones we have been applying. 

                                                   
* For a list of projects, see http://www.swemorph.com, u/Project List 

http://www.swemorph.com/
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Thus the next step in the analysis-synthesis process is to examine the internal relationships between 

the field parameters and "reduce" the field by weeding out configurations which contain mutually 

contradictory conditions. In this way, we create a preliminary outcome or solution space within the 
morphological field without having first to consider all of the configurations as such. 

  

This is achieved by a process of cross-consistency assessment. All of the parameter values in the 
morphological field are compared with one another, pair-wise, in the manner of a cross-impact ma-

trix (Figure 2). As each pair of conditions is examined, a judgment is made as to whether – or to 

what extent – the pair can coexist, i.e. represent a consistent relationship. Note that there is no refer-

ence here to direction or causality, but only to mutual consistency. Using this technique, a typical 
morphological field can be reduced by up to 90 or even 99%, depending on the problem structure. 

 

 
Figure 2: The cross-consistency matrix for morphological field in Figure 1.  

  

 
There are three principal types of inconsistencies involved here: purely logical contradictions (i.e. 

those based on the nature of the concepts involved); empirical constraints (i.e. relationships judged 

be highly improbable or implausible on practical, empirical grounds), and normative constraints (alt-
hough these must be used with great care, and clearly designated as such). 

 

This technique of using pair-wise consistency assessments between conditions, in order to weed out 

internally inconsistent configurations, is made possible by a principle of dimensionally inherent in 
morphological fields, or any discrete configuration space. While the number of configurations in 

such a space grows exponentially with each new parameter, the number of pair-wise relationships 

between parameter conditions grows only in proportion to the triangular number series – a quadratic 
polynomial. Naturally, there are also practical limits reached with quadratic growth. The point, how-

ever, is that a morphological field involving as many as 100,000 formal configurations can require 

no more than few hundred pair-wise evaluations in order to create a solution space. 
 

When this solution (or outcome) space is synthesized, the resultant morphological field becomes an 

inference model, in which any parameter (or multiple parameters) can be selected as "input", and any 

others as "output". Thus, with dedicated computer support, the field can be turned into a laboratory 
with which one can designate initial conditions and examine alternative solutions. 

GMA seeks to be integrative and to help discover new relationships or configurations. Importantly, it 

encourages the identification and investigation of boundary conditions, i.e. the limits and extremes of 
different parameters within the problem space. The method also has definite advantages for scientific 
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communication and – notably – for group work. As a process, the method demands that parameters, 

conditions and the issues underlying these be clearly defined. Poorly defined concepts become im-

mediately evident when they are cross-referenced and assessed for internal consistency. Like most 
methods dealing with complex social and organizational systems, GMA requires strong, experienced 

facilitation, an engaged group of subject specialists and a good deal of patience.  

 

 

3. The formal combinatorial properties of morphological models 

 
3.1 The morphological field 
 

 

 
 

Figure 3: Reference morphological field 

 

 

Let N = number of parameters in a morphological field (in the Reference field, figure 3, N=5) and let 
P denote a Parameter such that the parameters in a morphological field are: 

 

     P1, P2, P3 ... PN 

 

Let vx = the number of conditions in the value range of a given parameter Px, such that the total mor-

phological field is (quantitatively) defined by: 

 

           {Pxvi}x,i 
 

Then, the total number of simple configurations TSC (i.e. a configuration with one and only one con-
dition designated under each parameter) in a morphological field is: 

 

     TSC =    v1 * v2 * v3 ... vN        

 
 

 

or 
          TSC = 

 

 
This simply shows that TSC increases in a factorial manner with the increase in the number of pa-

rameters “N”.  So much for the basic morphological field. 
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Figure 4: Cross-consistency matrix (CCM) for morphological field in Figure 3. 

 

 
3.2 The Cross-consistency matrix and Parameter blocks 
 

The Cross-consistency matrix (CCM) pairs off every condition in each parameter with every other 

condition in all the other parameters. A parameter block (PB) consists of all of the paired conditions 

between two parameters, cross-referenced in the form of a 2-dimensional typology. In Figure 4, the 
parameter blocks are shown in alternating shaded and white groups. 

 

If N = number of parameters in a morphological field, then the number Parameter Blocks in the 
field’s Cross-Consistency Matrix  is: 

 

  ½N (N-1) 
        

This is an interesting mathematical expression that pops up all over the place. For instance: 

 

 It is the formula for generating the triangular number series 

 

 It is the possible number of (non-directed) edges connecting N nodes in a graph.  

 

 It is taught in social network theory and in facilitator training as the number of communica-

tion channels or possible (two-person) dialogues between N participants in a workshop 

(which is why group dynamics changes dramatically at around 7-8 people). 
 

 

Of course, all this has a common base: Generally, ½N(N-1) is the number of dyadic (pair-wise) rela-
tionships between N elements or objects. It is equal to the binomial coefficient: 

 

 

 
 

when k = 2. 

 

nCk      
       n!        

(n − k)! k! 
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Also, ½N(N-1) is central to the discussion of any metric space: it is the number of coefficients (or 

functions of position) required to define the metric properties of a space of N dimensions.(Riemann, 

1953).  
 

 

Number of cross-consistency pairs 
 

If the number of parameters in a morphological model is N and the number of parameter values for a 

parameter Px is vx, then the number of dyadic (pair-wise) relationships (Ct) between all parameter 
values (and thus the total number of cells in the cross-consistency matrix – CCM) is: 

 

 

Ct  =  
 

 

The take-home message is this: that while the number of formal configurations in a morphological 
model increases “geometrically” (factorially) with each additional parameter, the number of cross-

consistency pairs increases “only” in proportion to the quadratic polynomial f(x)=½x(x-1). This is 

what makes it possible to employ Cross-Consistency Assessment (CCA) to reduce a relatively large 
problem space to a more manageable solution space, without having to examine every configuration 

in the problem space.  

 

To sum up: we have four magnitudes which determine the primary formal properties of a morpho-
logical model: 

 

 
N  = number of parameters 

½N(N-1)  = number of parameter blocks in the CCM 

 vv  = number of pair-related cells in the CCM 

 v   = total number of simple configurations in the model 
 

 
In the case of v = 4 for each of the parameters, the relationship between these magnitudes is: 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

Table 1. The primary formal properties of a morphological model (for v=4) 

 

a b c d 

N ½N(N-1) 

  

Number of pa-
rameters 

Number of  dyadic 
relationships 

between parame-
ters   blocks 

Number of CCM 
cells 

Number of simple 
configurations 

2 1 16 16 

3 3 48 64 

4 6 96 256 

5 10 160 1024 

6 15 240 4096 

7 21 336 16348 

8 28 448 65536 

9 36 576 262144 
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4. The relationships between form and content 
 

4.1 Three ratios 
 

Expressions b, c and d (Table 1) are formally determined by N and Vx, i.e. the number of parameters 

and the number of conditions under each of the parameters. There are three other quantities that are 
determined by the logical, empirical and normative judgements made in the Cross-Consistency As-

sessment (CCA) which, together with b, c and d, give rise to three ratios that can help us to formally 

“type” morphological models. 

 
These three ratios are: 

 

1. The connectivity quotient ( - Kappa): The ratio of the number of parameters blocks which are 

constrained (PBc) to the total number of parameter blocks ½N(N-1). This is analogous to how the 

dimensions of an abstract space are topologically connected. 

 

2. The consistency quotient ( - χῖ /Chi): The ratio of the number of mutually constrained parameter 
value pairs in the Cross Consistency Matrix (CCM) to the total number of parameter value pairs (or 

cells) in the CCM. 

 

3. The solution space quotient  (  - Stigma): The ratio of the number of simple configurations in the 

solution space to the number of simple configurations in the in the total problem space. 
 

 

4.1.1. Connectivity Quotient ( - Kappa) 
 

Connectedness in a morphological model concerns how the different dimensional constructs of the 
model (i.e. its parameters) “hang together”, i.e. are topologically connected. There are two (princi-

pal) possibilities here for each of the ½N(N-1) parameter pairs: either two given parameters contain 

mutual (logical and/or empirical) constraints, or they are (logically and/or empirically) orthogonal. 
 

Orthogonal means “at right angles”. This means that the value ranges of two orthogonal parameters 

are independent of each other, i.e. they do not interfere with or constrain one another. Since we relate 

values by way of mutual consistency, then in a pair of orthogonal parameters Pa and Pb, any value of 

Pa is consistent with (can co-exist with) any value of Pb.  Figure 5 shows an orthogonal parameter 

pair (block), in which the assessment key “-“ means: “is consistent with...”  or “can co-exist with ...”. 

 

 

 
 

Figure 5: Orthogonal parameter block 

 

An orthogonal relationship between two parameters does not necessarily mean that there is no mean-
ingful content associated with the value relations. It simply means that there are no mutual con-
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straints between the parameters; i.e. everything goes. However, if a parameter Pk is orthogonal to all 

of the other parameters in a morphological model, then its variability has no effect on the rest of the 

model. Such a parameter is – so to speak – exogenous to the model as such. 

 
Parameter pairs are mutually constrained – and thus “connected” – when at least one value pair in 

the parameter block is deemed inconsistent, impossible or unviable. For instance, if we pit a range of 

age intervals in a population against a range of body weight intervals, then obviously (for us homo 

sapiens), there are going to be some expected constraints between age values and weight values (as 
seen in Figure 6). In this hypothetical example, for instance, “X” could mean highly unlikely and “?” 

pretty extreme. The diagonal area from bottom right to top left (containing “-“) we could call the 

main sequence of the relationship. This type of pattern often turns up when scales are pitted against 
each other. 

 

 
 

Figure 6: Constrained parameter block. 

 

If the number of parameters in a morphological model is N, then the minimum number of connec-
tions for the model to hang together as a whole (since every parameter must be connected to at least 

one other parameter) is N-1. Thus an N-dimensional model is called minimally connected when it 

has exactly N-1 connections and each parameter is connected to at least one other parameter. (In 

graph theory, these minimally connected configurations are called labelled free trees.) A model is 
completely connected when it has ½N(N-1) connections, and where every parameter is connected to 

every other parameter. While there is only one way to completely connect a model, there are many 

ways to minimally connect a model. For a model of N parameters there are N
N-2 

distinct minimally 
connected configurations (i.e. free trees). 

 

 

 
Table 2: Relationships of connectivity for an N-dimensional morpho-

logical model.  
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The connectedness between two parameters is not directional, but simply denotes that two parame-

ters constrain or interfere with each other somehow. Thus the connections between parameters in a 

morphological model can be represented in the form of an undirected graph (which is why the term 
“connectedness” was originally used in this context). For instance, a maximally connected 4-

dimensional model is represented in the following undirected graph (Figure 7): 

 
 

 
 

Figure 7: Completely connected model: N = 4; ½N(N-1) = 6. 
 

Similarly, too possible minimally connected 4-dimensiinal models are represented in Figures 8 and 

10, with their corresponding CCA matrices shown in figure 9 and 11 (the connected parameter 
blocks containing “X”, the unconnected blocks containing a hyphen). 

 

 
 

Figure 8: Minimally connected model: N = 4;  N-1 = 3. 
 

 

 
 

Figure 9: CCA format for Figure 8. “X”=connected; “-“ = unconnected. 
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Figure 10: Minimally connected model: N = 4;  N-1 = 3. 
 

 

 

 
 

Figure 11: CCA format for Figure 10. “X”=connected; “-“ = unconnected. 

 

 

The Connectivity Quotient  is the ratio of the number of constrained parameter blocks (PBc) to the 

total number of parameter blocks ½N(N-1). 
 

   =  .   PBc      .       
                               ½N (N-1)  

 

Since the minimum number of Constrained Parameter Blocks (PBc) required in order to define a 
proper model is (N-1), then the possible range of PBc is: 

 

                     (N-1)    ½N(N-1) 
 

and where  ranges from:    2/N    1 
 

 

 
 

4.1.2 The Consistency Quotient () (Chi) 
 

The consistency quotient is the ratio of the number of mutually constrained (i.e. inconsistent) cells 

(Cx) in the Cross-Consistency Matrix (CCM) to the total number of cells (Ct) in the CCM.  
 

       = Cx/Ct 
 

 

 
where   Ct  = 

 

 

The number of pair-wise mutually constrained cells (Cx) in a cross-consistency matrix is determined 
by the judgements made by the subject specialist group doing the morphological modelling. It is an 

“empirical” input, in the sense that it is not determined by any formal properties of the model. 
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Rather, it is determined by the explicit or implicit nature of the concepts supplied in order to create 

the model. In order to determine Cx, one simply has to count them in the CCM. 

 

4.1.3 The Solution space quotient (  = Stigma) 
 

The solution space quotient   is the ratio of the number of simple configurations making up the solu-
tion space (Configsol) to the total number of (formal) simple configurations in the in the problem 

space.  

 

         =    Configsol   [divided by] 

 

 

 

This ratio is a crucial indicator of the nature of the model thus developed. If, for instance, the ratio 

expressed by  is near or equal to 1, then the model is hyper-coherent. This means that just about 

everything is consistent with everything else. There is nothing wrong with such models; they are 
simply telling us that practically everything is possible. Certain types of futures scenarios models are 

of this form. If, on the other hand,  is very small, then the model is hyper-constrained, meaning that 
very few model configurations are possible. This is also an interesting outcome. 

 

 

4.2 The relationships between the three ratios 
 

Intuitively we would expect there to be a pattern between these relationships, since, clearly,  and  

should influence the size of the solution space, and thus the magnitude of .. Ultimately, we want to 

see how these relationships express themselves in different types of morphological models with dif-

ferent empirical contents. 

 
The only way to do this is to select and collate a number of actual morphological models developed 

in real settings for real problems. We have selected 16 representative models, chosen for their 

breadth of application. For the moment, the purpose of these models, i.e. their content, is not of any 

relevance. We simply want to see the spread of their formal characteristics as concerns the three 
cited ratios.  

 

The collation is shown in Graph 1.  
 

The graph is based on the idea that the relationship that best represents the formal constraining prop-

erties represented by the cross-consistency assessments (CCA) is:  [divided by] , which we shall call 
the constraining quotient.  This ratio expresses – in an approximate way – the distribution of the 

constraints over the whole cross-consistency matrix. The hypothesis is, that for a given , the con-
straints on the model will tend to be greater if these are concentrated to only a few parameter blocks, 
than if they are spread out more evenly over the entire matrix. Therefore, there should be some corre-

lation between the constraining quotient ( [divided by] ), and the solution quotient , which represents 

the relative size of the solution space.  
 

The graph shows a sequence of models where  is plotted against ( [divided by] , the constraining 
quotient). It shows a clear inverse relationship between the two, but not a very strong one. That there 

is such an inverse relationship is clear enough: models cannot deviate too far towards the upper right 

hand side of the graph, as this would represent a highly constrained CCM producing a relatively 

large solution quotient – an obvious contradiction. It is the same story in the opposite direction: 

weakly constrained CCM:s would not be expected to produce very small .  
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However, beside this purely combinatorial principle, the divergence of the models from the linear 

trend fit tells me that the formal aspects of morphological spaces and the empirical contents of the 

models have little to do with each other – at least as concerns the type of studies I have been carrying 
out. What is needed at this point is a careful comparison of the “divergent” models (e.g. those circled 

in Graph 1, in order to see what it is that determines this divergence. Experience tells me that two 

factors should contribute to such divergences: the scaling properties (including non-ordinal value 
ranges) employed in the dimensions of different models; and differences in the proportions of OR-

list and AND-lists employed in different models. But this will have to wait for another time, if not 

another life. 

 
I hope that Fritz would have enjoyed this formal analysis. 
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Graph 1: Correlation between constraint quotient and solution space quotient for 16 morphological models. 
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